优乐游戏手机版

  • 在线客服

  • 我的麦克林
      账号  
      密码  
             忘记密码 | 免费注册  

  • 我的收藏

  • 我的订单

  • 快速订购

  • 订购/客服:400-623-8666 | 021-50706066

    调控费托合成中CO解离作用机制研究获进展

    近日,中国科学院大连化学物理研究所研究员黄延强、中科院院士张涛团队在调控费托合成反应中一氧化碳(CO)解离的作用机制方面取得进展。研究发现,在还原过程中铜(Ru)纳米颗粒(NPs)上形成的TiOx覆盖层可直接参与C-O键的解离,从而显著提高其在费托合成反应的活性。研究成果发表于《自然—通讯》。
     
    费托合成反应可以将非石油资源(煤、天然气、生物质等)经合成气转化为具有高附加值的燃料或化学品,为发展替代能源提供了一条技术路线。在费托合成反应中,CO解离并进一步加氢形成CHx中间物种的步骤至关重要,通常发生在Fe、Co、Ru金属表面,其中金属Ru表现出最优的反应性能。但Ru基催化剂存在明显的粒径效应,8纳米左右的Ru NPs才具有较高的费托反应活性,这严重降低了贵金属Ru的利用效率。开发高分散、高活性的Ru基费托合成催化剂具有重要的意义。
     
    该团队利用金红石型RuO2与TiO2晶型相同、晶格匹配度高的特点,成功合成了高分散、高稳定的Ru/TiO2催化剂,其中Ru NPs粒径仅为2纳米左右,经600 ℃高温还原处理后粒径未发生明显变化。
     
    黄延强介绍:“通过改变催化剂的还原温度,实现了金属—载体强相互作用程度的可控调节,获得了具有不同金属-载体界面结构的Ru/TiO2催化剂”。
     
    研究表明,在适宜的金属-载体界面协同作用下,约2纳米的Ru NPs可以在温和条件下(160 ℃)表现出优异的费托反应活性,其TOF值是目前文献报道的最高值。通过多种表征技术并结合理论计算发现:利用金属-载体强相互作用形成的TiOx覆盖层可直接参与C-O键的解离,从而显著提高了Ru基催化剂的费托反应活性。
     
    该工作不仅揭示了金属-载体强相互作用在费托合成反应中的催化作用机制,还为其他高分散金属催化剂的设计提供了新思路。(来源:中国科学报 刘万生 张亚茹)

    上一篇: 我国科学家首次“抓住”爆炸瞬间 下一篇: 海洋细菌酶混杂催化功能定向进化研究获进展 优乐游戏手机版

    首页|网站使用条款|隐私政策|关于我们|网站地图
    Copyright © 2014 Macklin Inc. - All rights reserved.

    本网站销售的所有产品仅用于工业应用或者科学研究等非医疗目的,不可用于人类或动物的临床诊断或治疗,非药用,非食用。


       
    棋牌网站哪家好本溪娱网棋牌下载易火棋牌壹柒游棋牌悠哉棋牌安徽棋牌游戏中心三张棋牌游戏永凡棋牌官网下载